Hypothesis Testing

Acme 2007-Mar-05 : 20:40:36

Table of Contents

Introduction		1
Project Flow		2
Z-Test Sample		4
t-Test 1s		9
t-Test 2s -Eq		14
t-Test 2s (Uneq)		22
Paired T-Test for Paired Samples		30
One Sample Proportion		36
Two Sample Proportion		41
One-Way Anova		47
Two-Way Anova		52
Goodness-of-Fit		61
Test-of-Independence		68
Chi-1s Variance		75
Ch-2 Sample	•••	80

Project Introduction

Project Details	
Project Name	НҮР
Description	Hypothesis Testing
Objective	
Abstract	
Project Leader	
Commencement Date	15-Jul-2006
Project Completion Date	15-Jul-2006
Completion Date	
Status	Not Completed

Project Flow

Stages	Objective	Activities	Deliverables	Applet
	Z-Test	Compare sample mean against infinite population mean	Sample mean < test; sample mean = test or sample > test	HYP 2-Test
N	T-Test	Compare sample mean against finite population mean	Sample mean < test; sample mean = test or sample > test	HYP t-Test 1s
6	T.Test 2 Sample	Compare two sample means with EQUAL variances	Sample mean < test; sample mean = test or sample > test	HYP t-Test 2s
		Compare two sample means with UNEQUAL variances	Sample mean < test; sample mean = test or sample > test	HYP t-Test 2s
4	T-Test Paired	Compare sample means of two paired samples	Sample mean < test; sample mean = test or sample > test	t-Test Paired
Сī	One Sample Proportion	Compare sample proportion against infinite population proportion	Sample mean < test; sample mean = test or sample > test	HYP Proportion 1s
თ	Two Sample Proportion	Compare sample proportion against another sample proportion	Sample mean < test; sample mean = test or sample > test	HYP Proportion 2s
7	One-Way Anova	Compare sample means against finite population mean	Sample means are different (or not)	HYP a a Anova 1f
œ	Two-Way Anova	Compare two groups of sample means against finite population mean	Groups are different (or not)	HYP Anova 2f
ω	Goodness-of-Fit	Compare how well a data fits the expected data	Significant fit (or not)	HYP X ² GOF
10	Test-of-Independence	Compare two samples to see if they are independent	Indepentdent (or not, i.e. related)	HYP X ² TOI
=	One Sample Variance	Chi-square test for difference in one sample variance		HYP Chi-Sq 1s
12		F-test for differences in two		

	sample variances	HYP
Two Sample Variance		\wedge
		Chi-Sq 2s

Hypothesis Testing

Z-Test Sample

Bawani Thambu Acme 2007-Mar-05 : 18:58:59

Applet Introduction

Applet Details	
Applet Title	Z-Test
Description	Z-Test Sample
Objective	Example for Z-Test
Abstract	
Team Leader	Bawani Thambu
Commencement Date	05-Mar-2007
Expected Completion Date	
Completion Date	
Status	Not Completed
Team Name	Zteam
Team Members	1 IR00109 Shamel Razak

z - Test Data

Mode of selection : Sample Data

Summary Data

	Population	Sample
Size	{Infinity}	20
Mean	25.00	25.65
Variance	(Estimated)	3.61
Alpha	0.05	

Data

No.	Population	Sample
1		27.00
2		25.00
3		24.00
4		23.00
5		25.00
6		24.00
7		27.00
8		29.00
9		24.00
10		26.00
11		28.00
12		26.00
13		28.00
14		24.00
15		23.00
16		25.00
17		27.00
18		27.00
19		28.00
20		23.00

z - Test

Summary Data

	Population	Sample
Size	(Infinity)	20
Mean	25.00	25.65
Variance	3.61	3.61
Alpha	0.05	

Normal Distribution

Assumption Population is normally distributed Population has known mean

Ha: µ ≠ 25.00 [Alternative]

Ha: μ > 25.00 [Alternative]

Distribution of Test Statistic

Ha: µ < 25.00 [Alternative]

œ

Hypothesis Testing

t-Test 1s

Bawani Thambu Acme 2007-Mar-05 : 19:00:06

Applet Introduction

Applet Details	
Applet Title	t-Test 1s
Description	t-Test 1s
Objective	One Sample t-Test
Abstract	
Team Leader	Bawani Thambu
Commencement Date	05-Mar-2007
Expected Completion Date	
Completion Date	
Status	Not Completed
Team Name	1sTeam
Team Members	1 IR00105 Saleh Drus
	2 IR0002 Ang Koon Long

t - Test : 1 - Sample Data

Mode of selection : Sample Values [Mean, Variance]

Summary Data

	Sample1	Sample2
Size	{Infinity}	20
Mean	24.000	24.650
Variance	(Estimated)	3.608
Alpha	0.05	

t - Test : 1 - Sample

Summary Data

	Sample1	Sample2
Size	(Infinity)	20
Mean	24.00	24.65
Variance	0.00	3.61
Alpha	0.05	

Normal Distribution

Assumption Population is normally distributed Population has known mean

Hypothesis

Left Tail **Ho : µ >=** 24.00 [Claim] Ha: µ < 24.00 [Alternative]

Both Tails Ho : **µ** = 24.00 [Claim] Ha: µ ≠ 24.00 [Alternative]

Right Tail Ho: µ <= 24.00 [Claim] Ha: µ > 24.00 [Alternative]

Distribution of Test Statistic

Acme

Hypothesis Testing

t-Test 2s -Eq

Bawani Thambu Acme 2007-Mar-05 : 19:08:33

Applet Introduction

Applet Details	
Applet Title	t-Test 2s
Description	t-Test 2s -Eq
Objective	Example for t-Test2s Equal variance
Abstract	
Team Leader	Bawani Thambu
Commencement Date	05-Mar-2007
Expected Completion Date	
Completion Date	
Status	Not Completed
Team Name	2sTteam
Team Members	1 IR00107 Salman Shaari
	2 IR00115 Shree Shakthivel

t - Test : 2 - Sample Data

Mode of selection : Sample Data

Summary Data

	Sample1	Sample2
Size	20	20
Mean	5.51	5.66
Variance	0.01	0.02
Alpha	0.05	

Sample 1 Data

No.	Sample1
1	5.50
2	5.40
3	5.60
4	5.50
5	5.40
6	5.50
7	5.50
8	5.60
9	5.40
10	5.50
11	5.70
12	5.60
13	5.50
14	5.60
15	5.40
16	5.50
17	5.60
18	5.40
19	5.60
20	5.40

Sample 2 Data

No.	Sample2
1	5.50
2	5.70
3	5.80
4	5.70
5	5.50
6	5.60
7	5.80
8	5.60
9	5.70
10	5.60
11	5.90
12	5.80
13	5.60
14	5.50
15	5.70
16	5.60
17	5.50
18	5.70
19	5.80
20	5.50

Ð

Population is normally distributed.

Population has known mean.

Sample is randomly selected.

Observations are independent.

t Test : 2 Sample (Variance)

Assumption

Population is normally distributed. Population has known mean. Sample is randomly selected. Observations are independent.

Population is normally distributed. Population has known mean. Sample is randomly selected. Observations are independent.

t - Test : 2 - Sample

Summary Data (Equal Variance)

	Sample1	Sample2	Alpha	0.05
Size	20	20	v1	19
Mean	5.51	5.66	v2	19
Variance	0.01	0.02	F val	2.18
Alpha	0.05		F-Ratio	1.83

Normal Distribution

Assumption Population is normally distributed Population has known mean

Left Tail Ho: µ >= 5.51 [Claim]

Both Tails Ho : **µ** = 5.51 [Claim] **Ha** : $\mu \neq 5.51$ [Alternative]

Right Tail **Ho** : **µ** <= 5.51 [Claim] Ha: µ > 5.51 [Alternative]

Distribution of Test Statistic

Conclusion

Not enough statistical evidence that the true	Enough statistical evidence that the true	Enough statistical evidence that the true
nean is $<$ than 5.51 .	mean is not 5.51.	mean is > than 5.51 .

Hypothesis Testing

t-Test 2s (Uneq)

Bawani Thambu Acme 2007-Mar-05 : 19:22:24

Applet Introduction

Applet Details			
Applet Title	t-Test 2s		
Description	t-Test 2s (Uneq)		
Objective	t-Test 2 Sample Un Equal Variance		
Abstract			
Team Leader	Bawani Thambu		
Commencement Date	05-Mar-2007		
Expected Completion Date			
Completion Date			
Status	Not Completed		
Team Name	2sUTeam		
Team Members	1 IR00106 Sally Sally		
	2 IR0007 Azura Fariq		

t - Test : 2 - Sample Data

Mode of selection : Sample Values [Mean, Variance]

Summary Data

	Sample1	Sample2
Size	20	20
Mean	5.495	5.655
Variance	0.080	0.015
Alpha	0.05	

t Test : 2 Sample (Variance)

Assumption

Population is normally distributed. Population has known mean. Sample is randomly selected. Observations are independent. Population is normally distributed. Population has known mean. Sample is randomly selected. Observations are independent. Population is normally distributed. Population has known mean. Sample is randomly selected. Observations are independent.

t - Test : 2 - Sample

Summary Data (Unequal Variance)

	Sample1	Sample2	Alpha	0.05
Size	20	20	v1	19
Mean	5.50	5.66	v2	19
Variance	0.08	0.02	F val	2.18
Alpha	0.05		F-Ratio	5.33

Normal Distribution

Assumption Population is normally distributed Population has known mean

Hypothesis

Left Tail Ho: µ >= 5.50 [Claim] Ha: µ < 5.50 [Alternative]

Both Tails **Ho** : **µ** = 5.50 [Claim] **Ha** : $\mu \neq 5.50$ [Alternative]

Right Tail Ho: µ <= 5.50 [Claim] Ha: µ > 5.50 [Alternative]

Distribution of Test Statistic

Acme

Hypothesis Testing

Paired T-Test for Paired Samples

Bawani Thambu Acme 2007-Mar-05 : 19:33:11

Applet Introduction

Applet Details			
Applet Title	Paired T-Test		
Description	Paired T-Test for Paired Samples		
Objective	To provide a method for Paired T-Test		
Abstract	A Paired T-Test is used when the samples have a before-after relaltionship.		
Team Leader	Bawani Thambu		
Commencement Date	05-Mar-2007		
Expected Completion Date			
Completion Date			
Status	Not Completed		
Team Name	Paired T-Test		
Team Members	1 IR0009 Bawani Ho		
	2 IR00116 Sindy Chong		

t - Test : Paired Data

Mode of selection : Sample Data

Summary Data

	Sample1	Sample2	Difference
Size	20	20	40
Mean	5.51	5.52	5.51
Variance	0.01	0.02	0.01
Alpha	0.05		

Data

No.	Sample1	Sample2	Difference
1	5.50	5.50	0.00
2	5.40	5.30	-0.10
3	5.60	5.70	0.10
4	5.50	5.60	0.10
5	5.40	5.30	-0.10
6	5.50	5.40	-0.10
7	5.50	5.50	0.00
8	5.60	5.60	0.00
9	5.40	5.50	0.10
10	5.50	5.60	0.10
11	5.70	5.60	-0.10
12	5.60	5.70	0.10
13	5.50	5.60	0.10
14	5.60	5.50	-0.10
15	5.40	5.30	-0.10
16	5.50	5.60	0.10
17	5.60	5.50	-0.10
18	5.40	5.40	0.00
19	5.60	5.60	0.00
20	5.40	5.50	0.10

ð

t - Test : Paired

Summary Data

	Sample1	Sample2	Difference
Size	20	20	40.00
Mean	5.51	5.52	5.51
Variance	0.01	0.02	0.01
Alpha	0.05		

Normal Distribution

Assumption Population is normally distributed Population has known mean

Ho : μ1 - μ2 >= 5.51 [Claim] **Ha** : μ**1** - μ x < 5.51 [Alternative]

Both Tails Ho : μ**1** - μ**2** = 5.51 [Claim] Ha: μ 1 - μ x ≠ 5.51 [Alternative]

Right Tail **Ho** : μ1 - μ2 <= 5.51 [Claim] Ha: μ 1 - μ x > 5.51 [Alternative]

Distribution of Test Statistic

Acme

Conclusion

Not enough statistical evidence that the true mean is < than 5.51 .

Not enough statistical evidence that the true mean is not 5.51.

Not enough statistical evidence that the true mean is > than 5.51.

Hypothesis Testing

One Sample Proportion

Bawani Thambu Acme 2007-Mar-05 : 19:39:13

Applet Introduction

Applet Details			
Applet Title	1S Pi	oportion	
Description	One	Sample Propor	tion
Objective	To pr	ovide a method	d of One Sample Proportion.
Abstract	То со	mpare a samp	le proportion to a population proportion.
Team Leader	Bawa	ni Thambu	
Commencement Date	05-M	ar-2007	
Expected Completion Date			
Completion Date			
Status	Not C	ompleted	
Team Name	1S Pi	oportion	
Team Members	1	IR0019	Ernie Cho
	2	IR0006	Azrin Othman
	3	IR00115	Shree Shakthivel

Proportion : 1 - Sample Data

Mode of selection : Sample Data

Summary Data

Data

	Sample1	Sample2
Size	{Infinity}	20
Number	{Infinity}	8.00
Proportion	0.50	0.40
Alpha	0.05	

No.	Sample1	Sample2
1		0
2		0
3		0
4		0
5		0
6		0
7		0
8		0
9		1
10		1
11		1
12		1
13		1
14		1
15		1
16		1
17		1
18		1
19		1
20		1

Proportion : 1 - Sample

Summary Data

	Sample1	Sample2
Size	(Infinity)	20
Number	0.00	8.00
Proportion	0.50	0.40
Alpha	0.05	

Normal Distribution

Not enough statistical evidence that the true mean is < than 0.50.

Not enough statistical evidence that the true mean is not $0.50\ .$

Not enough statistical evidence that the true mean is > than 0.50 .

Hypothesis Testing

Two Sample Proportion

Bawani Thambu Acme 2007-Mar-05 : 19:44:23

Applet Introduction

Applet Details	
Applet Title	Two Sample Proportion
Description	Two Sample Proportion
Objective	
Abstract	
Team Leader	Bawani Thambu
Commencement Date	05-Mar-2007
Expected Completion Date	
Completion Date	
Status	Not Completed
Team Name	2sProp
Team Members	1 IR0063 Liew Peng Soon
	2 IR0085 Ng Thiam Seng

Proportion : 2 - Sample Data

Mode of selection : Sample Data

Summary Data

	Sample1	Sample2	Overall
Size	20	20	40
Number	9.00	14.00	23.00
Proportion	0.45	0.70	0.58
Alpha	0.05		

Sample 1 Data

Sample 2 Data

No.	Sample1
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0
10	1
11	1
12	1
13	1
14	1
15	1
16	1
17	1
18	1
19	1
20	1

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 1 16 1 17 1 18 1 19 1	No.	Sample2
2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 1 16 1 17 1 18 1 19 1	1	0
3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 1 16 1 17 1 18 1 19 1	2	0
4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 1 16 1 17 1 18 1 19 1	3	0
5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 1 16 1 17 1 18 1 19 1	4	0
6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 1 16 1 17 1 18 1 19 1	5	0
7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 1 16 1 17 1 18 1 19 1	6	0
8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 1 16 1 17 1 18 1 19 1	7	0
9 0 10 0 11 0 12 0 13 0 14 0 15 1 16 1 17 1 18 1 19 1	8	0
10 0 11 0 12 0 13 0 14 0 15 1 16 1 17 1 18 1 19 1	9	0
11 0 12 0 13 0 14 0 15 1 16 1 17 1 18 1 19 1	10	0
12 0 13 0 14 0 15 1 16 1 17 1 18 1 19 1	11	0
13 0 14 0 15 1 16 1 17 1 18 1 19 1	12	0
14 0 15 1 16 1 17 1 18 1 19 1	13	0
15 1 16 1 17 1 18 1 19 1	14	0
16 1 17 1 18 1 19 1	15	1
17 1 18 1 19 1	16	1
18 1 19 1	17	1
19 1	18	1
	19	1
20 1	20	1

Proportion : 2 - Sample

Summary Data

	Sample1	Sample2	Overall
Size	20	20	40.00
Number	9.00	14.00	23.00
Proportion	0.45	0.70	0.58
Alpha	0.05		

Normal Distribution

Hypothesis Testing	А	cme	Two Sample Proportion
mean is < than 0.45 .	mean is not 0.45 .	mean is > than 0.45 .	

Hypothesis Testing

One-Way Anova

Bawani Thambu Acme 2007-Mar-05 : 19:56:34

Applet Introduction

Applet Details	
Applet Title	One-Way Anova
Description	One-Way Anova
Objective	
Abstract	
Team Leader	Bawani Thambu
Commencement Date	05-Mar-2007
Expected Completion Date	
Completion Date	
Status	Not Completed
Team Name	1Anova
Team Members	1 IR0098 Rohaida Mahrin
	2 IR0097 Rexon Wong

Analysis of Variance 1 Factor Data

Response	Solderability
Unit	Force (kN)
Alpha	0.05

Sample Data

	120V	140V	160V
1	5.50	6.50	7.80
2	5.40	7.00	7.40
3	5.60	7.10	7.50
4	5.40	7.00	7.40
5	5.50	6.80	7.30
6	5.70		7.60
7	5.80		7.90
8	5.50		7.80
9	5.20		
10	5.00		

Analysis of Variance 1 Factor

	120V	140V	160V	Total
Size	10	5	8	23
Mean	5.46	6.88	7.59	6.51
Variance	0.05	0.06	0.05	0.05
Alpha	0.05			

Source	SS	df	MS	F	SS	Rho
Between Groups	21.00	2	10.50	197.95	20.94	94.95
Within	1.06	20	0.05			
St	22.06	22				
Sm	974.35	1				
ST	996.41	23				

(G)

Confidence Intervals							
120V	5.46	5.31	5.61	0.15			
140V	6.88	6.67	7.09	0.21			
160V	7.59	7.42	7.76	0.17			

Hypothesis Testing

Two-Way Anova

Bawani Thambu Acme 2007-Mar-05 : 20:05:45

Applet Introduction

Applet Details	
Applet Title	Two-Way Anova
Description	Two-Way Anova
Objective	
Abstract	
Team Leader	Bawani Thambu
Commencement Date	05-Mar-2007
Expected Completion Date	
Completion Date	
Status	Not Completed
Team Name	2ATeam
Team Members	1 IR0028 Halim Halim
	2 IR0095 Ramesh Murugan

Anova 2 Factor Data

Response	Solderability
Unit	Part per Million
Observations	3

Sample Data

			Temp				
			A1	A2	A3		
		1	3.50	2.90	3.40		
	<u>B</u>	2	2.60	3.50	2.90		
	3		2.80	3.20	3.10		
Pro		1	3.60	3.50	2.90		
ISSE	B2	2	3.10	2.80	3.50		
ıre		3	2.90	2.40	3.30		
		1	2.80	3.30	3.10		
	B 3	2	2.90	2.80	3.30		
		3	2.70	2.60	3.10		

Anova 2 Factor Response Tables

Response	Solderability
Unit	Part per Million
Observations	3

Averages

	Temp	Pressure		B1	B2	B3
Level 1	2.99	3.10	A1	2.97	3.20	2.80
Level 2	3.00	3.11	A2	3.20	2.90	2.90
Level 3	3.18	2.96	A3	3.13	3.23	3.17

Counts

	Temp	Pressure		B1	B2	B 3
Level 1	9	9	A1	3	3	3
Level 2	9	9	A2	3	3	3
Level 3	9	9	A3	3	3	3

Confidence Intervals

	A1	A2	A3
B1	0.40	0.40	0.40
B2	0.40	0.40	0.40
B3	0.40	0.40	0.40

G

(C)

Anova 2 Factor

Anova 2 Factor With Replication

Source	Pool	SS	df	MS	F	Ss	Rho
Temp	0	0.20	2	0.10	0.92	0.20	0.07
Pressure	0	0.14	2	0.07	0.61	0.14	0.05
Temp X Pressure	1	0.30	4	0.08	0.68		
Within	1	2.13	18	0.12	1.07		
Pool		2.43	22	0.11	1.00	2.43	0.88
St		2.77	26			2.77	1.00
Sm		252.08	1				
ST		254.85	27				

Confidence Intervals

A1	2.99	2.76	3.22	0.23	E
A2	3.00	2.77	3.23	0.23	E
A3	3.18	2.95	3.41	0.23	E

	Pressure					
B1	3.10	2.87	3.33	0.23		
B2	3.11	2.88	3.34	0.23		
B3	2.96	2.73	3.19	0.23		

G

Hypothesis Testing

Goodness-of-Fit

Bawani Thambu Acme 2007-Mar-05 : 20:09:47

Applet Introduction

Applet Details			
Applet Title	Goodness-of-Fit		
Description	Goodness-of-Fit		
Objective			
Abstract			
Team Leader	Bawani Thambu		
Commencement Date	05-Mar-2007		
Expected Completion Date			
Completion Date			
Status	Not Completed		
Team Name	Gteam		
Team Members	1 IR0098 Rohaida Mahrin		
	2 IR0099 Phoana Thebes		

Chi - Squared GOF Data

 Selection
 Unequal Expected Values

 Alpha
 0.05

	Frequency							
No.	Observed	Expected	Calc. Test Stat.	Lower Limit	Mid Value	Upper Limit	Test	
1	105.00	100.00	0.25	0.12	0.15	0.18	Ok	
2	112.00	100.00	1.44	0.13	0.16	0.19	Ok	
3	53.00	100.00	22.09	0.06	0.08	0.10	Ok	
4	97.00	100.00	0.09	0.11	0.14	0.16	Ok	
5	115.00	100.00	2.25	0.14	0.16	0.19	Ok	
6	118.00	100.00	3.24	0.14	0.17	0.20	Ok	
7	115.00	100.00	2.25	0.14	0.16	0.19	Ok	
	715.00	700.00	31.61					

G

Chi - Squared GOF

Assumption

A key assumption of the chi square test of independence is that each subject contributes data to only one cell. Therefore the sum of all cell frequencies in the table must be the same as the number of subjects in the experiment. Use of the chi-square tests is inappropriate if any expected frequency is below 1 or if the expected frequency is less than 5 in more than 20% of cells.

Hypothesis

Right tail (only) Ho : There is a good fit [Claim] Ha : There is not a good fit [Alternative]

Distribution of Test Statistic

If Ho is true; $\chi^2_{\ \nu}$ is Chi-square -distributed with ν degrees of freedom

Decision Rule

Alpha = 0.05 Degree Of Freedom = 6 X^2_v = 12.59 Accept Ho if = $X^2_{sample} < X^2_{\alpha,v}$ Reject Ho = Otherwise

Calculate Test Statistic

 X^2_v Calculate = 31.61

Statistical Decision Ho : Reject Test Statistic is significant at 0.05.

Conclusion There is not a good fit

G

Hypothesis Testing

Test-of-Independence

Bawani Thambu Acme 2007-Mar-05 : 20:13:24

Applet Introduction

Applet Details			
Applet Title	Test-of-Independence		
Description	Test-of-Independence		
Objective			
Abstract			
Team Leader	Bawani Thambu		
Commencement Date	05-Mar-2007		
Expected Completion Date			
Completion Date			
Status	Not Completed		
Team Name	тоі		
Team Members	1 IR0098 Rohaida Mahrin		
	2 IR0088 Norzam Ahmad		

Chi - Squared TOI Data

Alpha 0.05

Observed Values

			Class				
			Lower	Middle	Upper		
	1	Army	17.00	12.00	4.00	33.00	
Choice	2	Navy	15.00	8.00	5.00	28.00	
	3	Air Force	3.00	5.00	12.00	20.00	
	4	Marines	9.00	10.00	3.00	22.00	
			44.00	35.00	24.00	103.00	

Expected Values

			Class				
			Lower	Middle	Upper		
	1	Army	14.10	11.21	7.69	33.00	
Choice	2	Navy	11.96	9.51	6.52	28.00	
	3	Air Force	8.54	6.80	4.66	20.00	
	4	Marines	9.40	7.48	5.13	22.00	
			44.00	35.00	24.00	103.00	

Chi - Squared TOI

Assumption

A key assumption of the chi square test of independence is that each subject contributes data to only one cell. Therefore the sum of all cell frequencies in the table must be the same as the number of subjects in the experiment. Use of the chi-square tests is inappropriate if any expected frequency is below 1 or if the expected frequency is less than 5 in more than 20% of cells.

Hypothesis

 Right tail (only)

 Ho :
 Choice and Class are independent.

 Ha :
 Choice and Class are not independent.

 [Alternative]

Distribution of Test Statistic

If Ho is true; $\chi^2_{\ \nu}$ is Chi-square -distributed with ν degrees of freedom

Decision Rule

 $\begin{array}{rcl} \mbox{Alpha} &=& 0.05\\ \mbox{Degree Of Freedom} &=& 6\\ & \chi^2_{\ \ v} &=& 12.59\\ \mbox{Accept Ho if} &=& \chi^2_{\ \ sample} < \chi^2_{\ \ \alpha,v}\\ \mbox{Reject Ho} &=& \mbox{Otherwise} \end{array}$

Calculate Test Statistic

				Cla	ss	
			Lower	Middle	Upper	
	1	Army	0.60	0.06	1.77	2.42
ဂ	2	Navy	0.77	0.24	0.36	1.37
hoic	3	Air Force	3.60	0.47	11.56	15.63
ö	4	Marines	0.02	0.85	0.88	1.75
			4.98	1.62	14.57	21.18

Statistical Decision Ho : Reject Test Statistic is significant at 0.05.

Conclusion Choice and Class are not independent.

Hypothesis Testing

Chi-1s Variance

Bawani Thambu Acme 2007-Mar-05 : 20:18:24

Applet Introduction

Applet Details	
Applet Title	Chi-1sVariance
Description	Chi-1s Variance
Objective	Ch- 1 Sample variance
Abstract	
Team Leader	Bawani Thambu
Commencement Date	05-Mar-2007
Expected Completion Date	
Completion Date	
Status	Not Completed
Team Name	
Team Members	1 IR0099 Phoana Thebes

Chi - Squared : 1 Sample (Variance) Data

Mode of selection : Sample Data

Summary Data

D	at	а
	~	

	Population	Sample2
Size	{Infinity}	15
Mean		18.80
Variance	64.00	124.03
Alpha	0.05	

No.	Population	Sample2
1		25.00
2		30.00
3		5.00
4		15.00
5		18.00
6		42.00
7		16.00
8		9.00
9		10.00
10		12.00
11		12.00
12		38.00
13		9.00
14		14.00
15		27.00
16		
17		
18		
19		

Population is normally distributed.

Population has known mean.

Sample is randomly selected.

Observations are independent.

Chi - Squared : 1 Sample (Variance)

Assumption

Population is normally distributed. Population has known mean. Sample is randomly selected. Observations are independent. Population is normally distributed. Population has known mean. Sample is randomly selected. Observations are independent.

Alpha	=	0.95	Alpha	=	0.975	0.025	Alpha	=	0.05
x^2	=	6.57	x^2_v	=	5.63	26.12	x^2_v	=	23.68

Observations are indepen

Hypothesis Testing

Ch-2 Sample

Bawani Thambu Acme 2007-Mar-05 : 20:38:49

Applet Introduction

Applet Details				
Applet Title	Chi-2s			
Description	Ch-2 Sample			
Objective	Chi-=2 Sample Variance			
Abstract				
Team Leader	Bawani Thambu			
Commencement Date	05-Mar-2007			
Expected Completion Date				
Completion Date				
Status	Not Completed			
Team Name	2sVar			
Team Members	1 IR0088 Norzam Ahmad			
	2 IR0001 Amina Hameed			

Chi - Squared : 2 - Sample (Variance) Data

Mode of selection : Sample Values [Mean, Variance]

Summary Data

	Sample1	Sample2
Size	14	16
Mean	5.56	5.71
Variance	0.50	0.45
Alpha	0.05	

Chi - Squared : 2 Sample (Variance)

Assumption

Population is normally distributed. Population has known mean. Sample is randomly selected. Observations are independent. Population is normally distributed. Population has known mean. Sample is randomly selected. Observations are independent. Population is normally distributed. Population has known mean. Sample is randomly selected. Observations are independent.

